Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105489, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000658

RESUMO

EKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. Regulation of KLF1 is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the DDX5/p68 protein as an activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site upstream enhancer element (EHS1). We further show that this protein associates with DEK and CTCF. We postulate that the range of interactions of DDX5/p68 with these and other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1 and enables the formation of a proper chromatin configuration at the Klf1 locus. These individual interactions provide quantitative contributions that, in sum, establish the high-level activity of the Klf1 promoter and suggest they can be selectively manipulated for clinical benefit.


Assuntos
RNA Helicases DEAD-box , Elementos Facilitadores Genéticos , Fatores de Transcrição Kruppel-Like , Eritropoese , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
2.
Genome Res ; 31(6): 995-1010, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795334

RESUMO

Long noncoding RNAs or lncRNAs are a class of non-protein-coding RNAs that are >200 nt in length. Almost 50% of lncRNAs during zebrafish development are transcribed in an antisense direction to a protein-coding gene. However, the role of these natural antisense transcripts (NATs) during development remains enigmatic. To understand NATs in early vertebrate development, we took a computational biology approach and analyzed existing as well as novel data sets. Our analysis indicates that zebrafish NATs can be divided into two major classes based on their coexpression patterns with respect to the overlapping protein-coding genes. Group 1 NATs have characteristics similar to maternally deposited RNAs in that their levels decrease as development progresses. Group 1 NAT levels are negatively correlated with that of overlapping sense-strand protein-coding genes. Conversely, Group 2 NATs are coexpressed with overlapping protein-coding genes. In contrast to Group 1, which is enriched in genes involved in developmental pathways, Group 2 protein-coding genes are enriched in housekeeping functions. Group 1 NATs also show larger overlap and higher complementarity with the sense-strand mRNAs compared to other NATs. In addition, our transcriptomics data, quantifying RNA levels from cytoplasmic and nuclear compartments, indicates that Group 1 NATs are more abundant in the cytosol. Based on their expression pattern, cytosolic nature, and their higher complementarity to the overlapping developmental mRNAs, we speculate that Group 1 NATs function post-transcriptionally to silence spurious expression of developmental genes.


Assuntos
Morfogênese , RNA Antissenso , Peixe-Zebra , Animais , Morfogênese/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Transcriptoma , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...